Transcript profiling of two potato cultivars during glycoalkaloid-inducing treatments shows differential expression of genes in sterol and glycoalkaloid metabolism
نویسندگان
چکیده
Steroidal glycoalkaloids (SGA) are sterol-derived neurotoxic defence substances present in several members of the Solanaceae. In the potato (Solanum tuberosum), high SGA levels may render tubers harmful for consumption. Tuber SGA levels depend on genetic factors, and can increase as a response to certain stresses and environmental conditions. To identify genes underlying the cultivar variation in tuber SGA levels, we investigated two potato cultivars differing in their SGA accumulation during wounding or light exposure; two known SGA-inducing treatments. Using microarray analysis coupled to sterol and SGA quantifications, we identified a small number of differentially expressed genes that were associated with increased SGA levels. Two of these genes, encoding distinct types of sterol Δ24-reductases, were by sense/antisense expression in transgenic potato plants shown to have differing roles in sterol and SGA metabolism. The results show that an increased SGA level in potato tubers during both wounding and light exposure is mediated by coordinated expression of a set of key genes in isoprenoid and steroid metabolism, and suggest that differences in this expression underlie cultivar variations in SGA levels. These results may find use within potato breeding and quality assessment.
منابع مشابه
Regulation of sterol and glycoalkaloid biosynthesis in potato (Solanum tuberosum L.) – Identification of key genes and enzymatic steps
Steroidal glycoalkaloids (SGA) are toxic secondary metabolites present in some members of the Solanaceae family, including potato and tomato. The SGA level in tubers of potato (Solanum tuberosum L.) depends on genetic factors, but can also increase in response to e.g. wounding and light exposure. An upper limit of 200 mg SGA/kg f.w. is recommended in tubers used for human consumption. The SGA b...
متن کاملReduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA.
Transgenic potato (Solanum tuberosum cv Désirée) plants overexpressing a soybean (Glycine max) type 1 sterol methyltransferase (GmSMT1) cDNA were generated and used to study sterol biosynthesis in relation to the production of toxic glycoalkaloids. Transgenic plants displayed an increased total sterol level in both leaves and tubers, mainly due to increased levels of the 24-ethyl sterols isofuc...
متن کاملGlycoalkaloid Content and Starch Structure in Solanum Species and Interspecific Somatic Potato Hybrids
When genome sections of wild Solanum species are bred into the cultivated potato (S. tuberosum L.) to obtain improved potato cultivars, the new cultivars must be evaluated for their beneficial and undesirable traits. Glycoalkaloids present in Solanum species are known for their toxic as well as for beneficial effects on mammals. On the other hand, glycoalkaloids in potato leaves provide natural...
متن کاملThe role of phytochromes in regulating biosynthesis of sterol glycoalkaloid in eggplant leaves
Glycoalkaloids are toxic compounds that are synthesized by many Solanum species. Glycoalkaloid biosynthesis is influenced by plant genetic and environmental conditions. Although many studies have shown that light is an important factor affecting glycoalkaloid biosynthesis, the specific mechanism is currently unknown. Chlorophyll and carotenoid biosynthesis depend on light signal transduction an...
متن کاملPotato Glycoalkaloids, Past Present and Future
The steroidal glycoalkaloids are naturally occurring specialty metabolites of questionable desirability in the vegetable crop, potato. Although glycoalkaloids undoubtedly originated under selection as feeding deterrents against herbivorous pests, they no longer function as the primary feeding deterrent. Moreover, due to their potential toxicity, guidelines persist as to the maximal allowable co...
متن کامل